Abstract:
The method for determination of the mass concentrations of particulate matter smaller than 1.0, 2.5, 10, and 30 μm suspended in ground air was proposed. The method involves remote lidar sounding of the atmosphere at wavelengths λ = 0.355, 0.532, 1.064, 2.13 μm, recovering the spectral-spatial distributions of aerosol extinction coefficient from the lidar signal, and their converting to the spatial distribution of the mass concentrations of aerosol fractions based on regression relations between optical and microphysical characteristics of the aerosol. To improve the accuracy and stability of the solution of system of lidar equations the choice of calibration constants and the lidar ratio at the wavelengths of the sounding radiation is carried out taking into account the multicollinearity of the spectral aerosol extinction coefficients, which is expressed in the form of multiple regression equation. The regressions were obtained in the framework of World Meteorological Organization’s optical model of urban aerosol under wide variations in model parameters which characterize the particle size distribution and the complex refractive index of the aerosol matter. The numerical experiments on remote laser sounding of the mass concentration of aerosol fractions in the atmosphere have shown the robustness of the proposed method.
Keywords:
urban aerosol, respirable particles, mass concentration, remote laser sounding, multiple regressions
References:
- Silva R.A., West J.J., Zhang Y., Anenberg S.C., Lamarque J.F., Shindell D.T., Collins W.J., Dalsoren S., Faluvegi G., Folberth G., Horowitz L.W., Nagashi Plummer D., Righi M., Stevenson D.S., Strode S., Szopa S., Zeng G. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change // Environ. Res. Lett. 2013. V. 8, N 3. P. 034005.
- Klimenko A.P., Korolev V.I., Shevcov V.I. Nepreryvnyj kontrol' koncentracii pyli. Kiev: Tehnika, 1980. 181 p.
- Dudkin N.I., Adaev I.S. Izmerenie massovoj koncentracii ajerozolej // Mir izmerenij. 2007. N 11. P. 37–40.
- Görner P., Simon X., Bémer D., Lidén G. Workplace aerosol mass concentration measurement using optical particle counters // J. Environ. Monit. 2012. V. 14, N 2. P. 420–428.
- Chajkovskij A.P., Ivanov A.P., Balin Ju.S., El'nikov A.V., Tulinov G.F., Pljusnin I.I., Bukin O.A., Chen B.B. Lidarnaja set' CIS-LiNet dlja monitoringa ajerozolja i ozona: metodologija i apparatura // Optika atmosf. i okeana. 2005. V. 18, N 12. P. 1066–1072.
- Adam M., Pahlow M., Kovalev V., Ondov J.M., Parlange M.B., Nair N. Aerosol optical characterization by nephelоmeter and lidar: The Baltimore Supersite experiment during the Canadian forest fire smoke intrusion // J. Geophys. Res. D. 2004. V. 109, iss. D16. DOI: 10.1029/2003JD004047.
- Zavyalov V.V., Marchant C.C., Bingham G.E., Wilkerson T.D., Hatfield J.L., Martin R.S., Silva P.J., Moore K.D., Swasey J., Ahlstrom D.J., Jones T.L. Aglite lidar: Calibration and retrievals of well characterized aerosols from agricultural operations using a three-wavelength elastic lidar // J. Appl. Remote Sens. 2009. V. 3, iss. 1. P. 033522-01–033522-21.
- Ivlev L.S., Vasil'ev A.V., Belan B.D., Panchenko M.V., Terpugova S.A. Optiko-mikrofizicheskie modeli gorodskih ajerozolej // Tret'ja Mezhdunar. konf. «Estestvennye i antropogennye ajerozoli»: Sb. trudov. Sankt-Peterburg, 24.09–27.09.2001. SPb.: Izd-vo NIIH SPbGU, 2003. P. 161–170.
- Hmelevcov S.S., Korshunov V.A., Nikitin V.M., Kobelev V.V. Mnogovolnovoe i poljarizacionnoe lidarnoe zondirovanie ajerozol'nyh promyshlennyh vybrosov // Optika atmosf. i okeana. 2005. V. 18, N 3. P. 232–237.
- Krekov G.M., Krekova M.M., Suhanov A.Ja. Ocenka jeffektivnosti ispol'zovanija perspektivnyh lidarov belogo sveta dlja zondirovanija mikrofizicheskih parametrov sloistoj oblachnosti: 1. Analiticheskij obzor // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 661–670.
- World Meteorological Organization. World Climate Research Programme: A preliminary cloudless standard atmosphere for radiation computation. Switzerland, Geneva. Report WCP-112, WMO/TD-24. 1986. 60 p.
- Zuev V.E., Kaul' V.V., Samohvalov I.V. Lazernoe zondirovanie industrial'nyh ajerozolej. Novosibirsk: Nauka, 1986. 192 p.
- Krekov G.M., Kavkjanov S.I., Krekova M.M. Interpretacija signalov opticheskogo zondirovanija atmosfery. Novosibirsk: Nauka, 1987. 184 c.
- Böckmann C., Wandinger U., Ansmann A., Bösenberg J., Amiridis V., Boselli A., Delaval A., De Tomasi F., Frioud M., Grigorov I.V., Hågård A., Horvat M., Iarlori M., Komguem L., Kreipl S., Larcheveque G., Matthias V., Papayannis A., Pappalardo G., Rocadenbosch F., António Rodrigues J., Schneider J., Shcherbakov V., Wiegner M. Aerosol lidar intercomparison in the framework of the EARLINET project. 2. Aerosol backscatter algorithms // Appl. Opt. 2004. V. 43, N 4. P. 977–989.
- Kovalev V.A., Eichinger W.E. Elastic Lidar: Theory, Practice, and Analysis Methods. Hoboken, New Jersey: John Wiley & Sons, 2004. 615 p.
- Lysenko S.A., Kugejko M.M. Metodika vosstanovlenija vysotnogo raspredelenija massovoj koncentracii ajerozolja v atmosfere iz rezul'tatov lidarnogo zondirovanija na dlinah voln Nd:YAG-lazera // Optika i spektroskopija. 2010. V. 109, N 6. P. 1212–1220.
- Lysenko S.A., Kugejko M.M. Vosstanovlenie opticheskih i mikrofizicheskih harakteristik postvulkanicheskogo stratosfernogo ajerozolja iz rezul'tatov trehchastotnogo lidarnogo zondirovanija // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 308–318.
- Lysenko S.A., Kugejko M.M. Vosstanovlenie massovoj koncentracii pyli v promyshlennyh vybrosah iz rezul'tatov opticheskogo zondirovanija // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 960–968.
- Samojlova S.V., Balin Ju.S., Kohanenko G.P., Penner I.Je. Issledovanie vertikal'nogo raspredelenija troposfernyh ajerozol'nyh sloev po dannym mnogochastotnogo lidarnogo zondirovanija. Part 1. Metody vosstanovlenija opticheskih parametrov // Optika atmosf. i okeana. 2009. V. 22, N 4. P. 344–357.
- Kovalev V.A. Stable near-end solution of the lidar equation for clear atmospheres // Appl. Opt. 2003. V. 42, N 3. P. 585–591.
- Kugejko M.M., Lysenko S.A. Lazernaja spektronefelometrija ajerodispersnyh sred. Minsk: BGU, 2012. 208 з.
- Lysenko S.A., Kugejko M.M. Regressionnyj podhod k analizu informativnosti i interpretacii dannyh ajerozol'nyh opticheskih izmerenij // Zhurn. prikl. spektroskopii. 2009. V. 76, N 6. P. 876–883.
- Shifrin K.S. Vvedenie v optiku okeana. L.: Gidrometeoizdat, 1983. 280 p.
- Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent zemnoj atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
- Lysenko S.A., Kugejko M.M. Nefelometricheskij metod izmerenija massovyh koncentracij gorodskih ajerozolej i ih respirabel'nyh frakcij // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 435–442.
- Bohren G.F., Huffman D.R. Absorption and Scattering of Light by Small Particles. New York: John Wiley & Sons, 1983. 544 p.
- NAPAP (1991) State of science and technology. The US National Acid Precipitation Assessment Program, Washington, DC. V. III, ch. 24. P. 24–90.
- Thompson J.E., Hayes P.L., Jimenez J.L., Adachi K., Zhang X., Liu J., Weber R.J., Buseck P.R. Aerosol optical properties at Pasadena, CA during CalNex 2010 // Atmos. Environ. 2012. V. 55. P. 190–200.
- Jung J., Lee H., Kim Y.J., Liu X., Zhang Y., Hu M., Sugimoto N. Optical properties of atmospheric aerosols obtained by in situ and remote measurements during 2006 Campaign of Air Quality Research in Beijing (CAREBeijing-2006) // J. Geophys. Res. А. 2009. V. 114, iss. D2. DOI: 10.1029/2008JD010337.
- Trier A., Cabrini N., Ferrer J. Correlations between urban atmospheric light extinction coefficients and particle mass concentrations // Atmosfera. 1997. V. 10, N 3. P. 151–160.
- Titos G., Foyo-Moreno I., Lyamani H., Querol X., Alastuey A., Alados-Arboledas L. Optical properties and chemical composition of aerosol particles at an urban location: An estimation of the aerosol mass scattering and absorption efficiencies // J. Geophys. Res. A. 2012. V. 117, iss. D4. DOI: 10.1029/2011JD016671.
- Cattrall C., Reagan J., Thome K., Dubovic O. Variability of aerosol spectral lidar and backscatter and extinction ratio of key aerosol types derived from selected Aerosol Robotic Network locations // J. Geophys. Res. 2005. V. 110, iss. D10. DOI: 10.1029/2004JD005124.