The CO2 absorption is measured in the 8000 cm–1 region, calculation of the absorption coefficient is performed using the asymptotic line wing shape theory with fitting to the experimental data. Calculated coefficient values agree well with the measured data. According to the line wing theory the absorption in the band wings is conditioned by the wings of the strong lines of the near band. Within the framework of the theory, experimental and calculated data on the CO2 absorption coefficient in the wings of two bands in the 8000 cm–1 region can provide the information about the line shape at frequency detunings corresponding to several tens of half-widths. The results obtained support the hypothesis that line shape parameters in the line wings related to the transitions with the same initial state appear to be close to each other. The expression of the spectral line shape at large frequency detunings may be useful for modeling the radiative transfer in the atmospheric windows of the planets with significant CO2 content.
continuum absorption, carbon dioxide, self-broadening, spectral line wings
1. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour self-continuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. and Radiat. Transfer. 2011. V. 112, N 8. P. 1286–1303.
2. Winters B.H., Silverman S., Benedict W.S. Line shape in the wing beyond the band head of the 4,3 m band of CO2 // J. Quant. Spectrosc. and Radiat. Transfer. 1964. V. 4, N 4. P. 527–537.
3. Menoux V., LeDoucen R., Boissoles J., Boulet C. Line shape in the low-frequency wing of self- and N2-broadened ν3 CO2 lines: temperature dependence of the asymmetry // Appl. Opt. 1991. V. 30, N 3. P. 281–286.
4. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filipov N.N. Influence of the line interference on the vibration-rotation band shapes // J. Quant. Spectrosc. and Radiat. Transfer. 1984. V. 31, N 6. P. 521–543.
5. Lamouroux J., Tran H., Laraia A.L., Gamache R.R., Rothman L.S., Gordon I.E., Hartmann J.-M. Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 mm region // J. Quant. Spectrosc. and Radiat. Transfer. 2010. V. 111, N 15. P. 2321–2331.
6. Stefani S., Piccioni G., Snels M., Grassi D., Adriani A. Experimental CO2 absorption coefficients at high pressure and high temperature // J. Quant. Spectrosc. and Radiat. Transfer. 2013. V. 117. P. 21–28.
7. Tran H., Boulet C., Stefani S., Snels M., Piccioni G. Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm–1. I–central and wing regions of the allowed vibrational bands // J. Quant. Spectrosc. and Radiat. Transfer. 2011. V. 112, N 6. P. 925–936.
8. Burch D.E., Gryvnak D.A. Absorption of infrared radiant energy by CO2 and H2O. V. Absorption by CO2 between 1100 and 1835 cm–1 (9.1–5.5 mm) // J. Opt. Soc. Amer. 1971. V. 61, N 4. P. 499–503.
9. Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc. Amer. 1969. V. 59, N 3. P. 267–280.
10. Vigasin A.A. Bimolecular absorption in atmospheric gases // Weakly Interacting Molecular Pairs: Unconventional Absorbers of Radiation in the Atmosphere / Eds. C. Camy-Peyret, A.A. Vigasin. Dordrecht: Kluwer, 2003. P. 23–47.
11. Ma Q., Tipping R.H. The distribution of density matrices over potential-energy surfaces: application to the calculation of the far-wing line shapes for CO2 // J. Chem. Phys. 1998. V. 108, N 9. P.3386–3399.
12. Ma Q., Tipping R.H., Boulet C., Bouanich J. Theoretical far-wing line shape and absorption for high-temperature CO2 // Appl. Opt. 1999. V. 38, N 3. P. 599–604.
13. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekuljarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
14. Tvorogov S.D., Nesmelova L.I. Radiacionnye processy v kryl'jah polos atmosfernyh gazov // Izv. AN SSSR. Ser. Fiz. atmosf. i okeana. 1976. V. 12, N 6. P. 627–633.
15. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kojefficient pogloshhenija sveta v kryle polosy 4.3μm СО2 // Izv. vuzov. Fiz. 1980. Iss. 10. P. 106–107.
16. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Spektral'noe povedenie kojefficienta pogloshhenija v polose 4.3 μm SO2 v shirokom diapazone temperatur i davlenij // Optika atmosf. i okeana. 1992. V. 5, N 9. P. 939–946.
17. Rodimova O.B. Kontur spektral'nyh linij SO2 pri samoushirenii ot centra do dalekogo kryla // Optika atmosf. i okeana. 2002. V. 15, N 9. P. 768–777.
18. Afanasenko T.S., Rodin A.V. Vlijanie stolknovitel'nogo ushirenija linij na spektr i potoki teplovogo izluchenija v nizhnej atmosfere Venery // Astron. vestn. 2005. V. 39, N 3. P. 1–13.
19. Ponomarev Ju.N., Petrova T.M., Solodov A.M., Solodov A.A., Sulakshin S.A. Fur'e-spektrometr s 30-metrovoj mnogohodovoj kjuvetoj dlja issledovanija slabyh spektrov pogloshhenija atmosfernyh gazov // Optika atmosf. i okeana. 2011. V. 24, N 8. P. 726–728.
20. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. and Radiat. Transfer. 2013. V. 120. P. 23–35.
21. Tvorogov S.D., Rodimova O.B. Spectral line shape. I. Kinetic equation for arbitrary frequency detunings // J. Chem. Phys. 1995. V. 102, N 22. P. 8736–8745.
22. Bogdanova Yu.V., Rodimova O.B. Line shape in far wings and water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. and Radiat. Transfer. 2010. V. 111, N 15. P. 2298–2307.
23. Girshfel'der Dzh., Kertiss Ch., Berd R. Molekuljarnaja teorija gazov i zhidkostej. M.: Izdatelstvo inostr. literatury, 1961. 930 p.
24. Vojcehovskaja O.K., Nesmelova L.I., Rodimova O.B., Sulakshina O.N., Makushkin Ju.S., Tvorogov S.D. Kojefficient pogloshhenija sveta v kryle polosy 1.4 μm SO2 // 6-j Vsesojuzn. simpoz. po rasprostraneniju lazernogo izluchenija v atmosfere: Tezisy dokl. Tomsk, 1981. Pt. 2. P. 16–19.
25. Nesmelova L.I., Rodimova O.B., Tvorogov S.D., Vojcehovskaja O.K., Makushkin Ju.S., Sulakshina O.N. Kojefficient pogloshhenija sveta v kryl'jah polos uglekislogo gaza v oblasti 2.7 μm // 6-j Vsesojuzn. simpoz. po molekuljarnoj spektroskopii vysokogo i sverhvysokogo razreshenija: Tezisy dokl. Tomsk, 1982. Pt. 2. P. 62–66.
26. Nesmelova L.I., Rodimova O.B., Tvorogov S.D., Vojcehovskaja O.K., Sulakshina O.N. Kojefficient pogloshhenija v kryl'jah polos uglekislogo gaza v spektral'nom intervale 790–910 sm–1 // Izv. vuzov. Fiz. 1982. N 5. P. 105–108.
27. Klimeshina T.E., Rodimova O.B. Izmenenie kontura linii v kryle ot polosy k polose v sluchae N2O i SO2 // Optika atmosf. i okeana. 2013. V. 25, N 1. P. 18–23.