Water vapor line broadening coefficients induced by carbon dioxide are important for different problems of atmospheric physics, astrophysics, and laser physics. Line widths of H2O–CO2 were computed by a semi-empirical method for rotational quantum numbers J from 0 till 20. The temperature dependence was investigated and the temperature exponents for every transition were calculated.
line contour, half-width, temperature dependence
1. Fedorova A., Korablev O., Vandaele A.-C., Bertaux J.-L., Belyaev D., Mahieux A., Neefs E., Wilquet W.V., Drummond R., Montmessin F., Villard E. HDO and H2O vertical distributions and isotopic ratio in the Venus mesosphere by Solar Occultation at Infrared spectrometer on board Venus Express // J. Geophys. Res. 2008. V. 113. E00B22, doi:10.1029/2008JE003146. P. 1–16.
2. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. de Physique. 1979. V. 40, N 10. P. 923–943.
3. Bykov A., Lavrentieva N., Sinitsa L. Semiempiric approach to the calculation of H2O and CO2 line broadening and shifting // Mol. Phys. 2004. V. 102, iss. 14–15. P. 1653–1658.
4. Lavrentieva N., Osipova A., Sinitsa L., Claveau Ch., Valentin A. Shifting temperature dependence of nitrogen-broadened lines in the ν2 band of H2O // Mol. Phys. 2008. V. 106, iss. 9–10. P. 1261–1266.
5. Buldyreva J., Lavrentieva N. Nitrogen and oxygen broadening of ozone infrared lines in the region of 5 μm: theoretical predictions by semiempirical and semiclassical methods // Mol. Phys. 2009. V. 107, iss. 15. P. 1527–1536.
6. Lavrent'eva N.N., Mishina T.P., Sinica L.N., Tennison Dzh. Raschety samoushirenija i samosdviga spektral'nyh linij vodjanogo para s ispol'zovaniem tochnyh kolebatel'no-vrashhatel'nyh volnovyh funkcij // Optika atmosf. i okeana. 2008. V. 21, N 12. P. 1096–1100.
7. Petrova T.M., Solodov A.M., Solodov A.A., Dudaryonok A.S., Lavrentieva N.N. Measurements of O2-broadening and -shifting parameters of the water vapor spectral lines in the second hexad region // J. Quant. Spectrosс. and Radiat. Transfer. 2011. V. 112, iss. 18. P. 2741–2749.
8. Dudarenok A.S., Lavrent'eva N.N., Arshinov K.I., Nevdah V.V. Stolknovitel'noe ushirenie linij SO2 davleniem N2O // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 858–863.
9. URL: http://wadiss.saga.iao.ru
10. URL: http://ara.lmd.polytechnique.fr
11. Izatt J.R., Sakai H., Benedict W.S. Positions intensities and width of water-vapor lines between 475 and 692 cm–1 // J. Opt. Soc. Amer. 1969. V. 59, N 1. P. 19–26.
12. Varanasi P., Prasad C.R. Line widths and intensities in H2O–CO2 mixtures. I. An experimental study on the 6.3 μ band of water vapor // J. Quant. Spectrosc. and Radiat. Transfer. 1970. V. 10, iss.1. P. 65–69.
13. Varanasi P. Line widths and intensities in H2O–CO2 mixtures. II. High-resolution measurements on the ν2-fundamental of water vapor // J. Quant. Spectrosc. and Radiat. Transfer. 1971. V. 11, iss. 3. P. 223–230.
14. Sagawa H., Mendrok J., Seta T., Hoshina H., Baron Ph., Suzuki K., Hosako I., Otani C., Hartogh P., Kasai Y. Pressure broadening coefficients of H2O induced by CO2 for Venus atmosphere // J. Quant. Spectrosc. and Radiat. Transfer. 2009. V. 110, iss. 18. P. 2027–2036.
15. Brown L.R., Humphrey C.M., Gamache R.R. CO2-broadened water in the pure rotation and ν2 fundamental regions // J. Mol. Spectrosc. 2007. V. 246, iss. 1. P. 1–21.
16. Bykov A.D., Lavrent'eva N.N., Sinica L.N. Vlijanie iskrivlenija traektorii stolknoveniem na sdvigi linij molekul v vidimoj oblasti spektra // Optika atmosf. i okeana. 1992. V. 5, N 9. P. 907–914.
17. Buldyreva J., Robert D., Bonamy J.J. Semiclassical calculations with exact trajectory for N2 rovibrational Raman linewidths at temperatures below 300 K // J. Quant. Spectrosc. and Radiat. Transfer. 1999. V. 62, iss. 3. P. 321–343.
18. Buldyreva J., Benec’h S., Chrysos M. Infrared nitrogen-perturbed NO linewidths in a temperature range of atmospheric interest: An extension of the exact trajectory model // Phys. Rev. A. 2000. V. 63, N12. P. 708–722 [012708 – 0127808-14].
19. Flaud J.-M., Camy-Peyret C., Maillard J.-P. Higher ro-vibrational levels of H2O deduced from high resolution oxygen-hydrogen flame spectra between 2800 and 6200 cm–1// Mol. Phys. 1976. V. 32, iss. 2. P. 499–521.
20. Shostak S.L., Muenter J.S. The dipole moment of water. II. Analysis of the vibrational dependence of the dipole moment in terms of a dipole moment function // J. Chem. Phys. 1991. V. 94, iss. 9. P. 5883–5890.