The paper repots on experimental and theoretical research in the effect of chlorine concentration on the radiation efficiency of a coaxial dielectric barrier discharge Xe-Cl2 excilamp at a working mixture pressure of 240-250 Torr. The experiments were performed in the range of Cl2 concentrations 0.01-1%. The characteristics of the barrier discharge were calculated in the framework of a one-dimensional magnetohydrodynamic model in the range of Cl2 concentrations 0.1-5%. It is shown that at a chlorine concentration of 0.01-0.1%, the radiation intensities of the Xe2* band (172 nm) and XeCl* band (308 nm) are comparable. As the Cl2 concentration in the mixture is increased, the radiation intensity of Xe2 decreases rapidly, and at a chlorine concentration of 0.2%, the radiant flux of the discharge is dominated by the XeCl (B → X) band with a maximum intensity at 308 nm. The maximum radiation efficiency of this band is attained at chlorine concentrations of 0.4-0.5%. The numerical simulation shows that the total power deposited in the discharge increases with the chlorine concentration due to the increase in the power expended in the heating of positive and negative ions. The power dissipated by electrons decreases as the chlorine concentration in the working mixtures is increased. Recommendations are given on choosing the chlorine content in the mixture to decrease the VUV radiation intensity of the second Xe2* excimer continuum with a little decrease in excilamp efficiency.
XeCl, excilamp, radiation efficiency, dielectric barrier discharge, magnetohydrodynamic model
1. Gellert B., Kogelschatz U. Generation of excimer emission in dielectric barrier discharges // Appl. Phys. B. 1991. V. 52, N 1. P. 14–21.
2. Sosnin E.A., Tarasenko V.F., Lomaev M.I. UV and VUV excilamps. Saarbrücken, Deutschland / Germany: LAP LAMBERT Academic Publishing, 2012. 318 p.
3. Kogelschatz U. Silent-discharge driven excimer UV sources and their applications // Appl. Surf. Sci. 1992. V. 54, N 9. P. 410–423.
4. Avtaeva S.V., Saghi B., Rahmani B. One-Dimensional Fluid Model and Characteristics of the Dielectric Barrier Discharge in 0.99 Xe – 0.01 Cl2 Mixture // IEEE Transactions on Plasma Sci. 2011. V.39, N 9. P. 1814−1822.
5. Lomaev M.V., Skakun V.S., Sosnin Je.A., Tarasenko V.F., Shitc D.V., Erofeev M.V. Jeksilampy − jeffektivnye istochniki spontannogo UF- i VUF-izluchenija // Uspehi fiz. nauk. 2003. V. 173, N 2. P. 201–217.
6. Lomaev M.I., Tarasenko V.F., Tkachev A.N., Shitc D.V., Jakovlenko S.I. O formirovanii konusoobraznyh mikrorazrjadov v KrCl- i XeCl-jeksilampah // Zh. tehn. fiz. 2004. V. 74, iss. 6. P. 129–133.
7. Sosnin E.A., Avdeev S.M., Panarin V.A., Tarasenko V.F., Pikulev A.A., Tsvetkov V.M. The radiative and thermodynamic processes in DBD driven XeBr and KrBr exciplex lamps // Eur. Phys. J. D. 2011. V. 62, N 3. P. 405–411.
8. Avtaeva S. Hydrodynamic Modeling of the Dielectric Barrier Discharges in Xe and Xe–Cl2 Mixtures // Horizons in World Physics. Vol. 279 / Ed.: Kenneth R. Carter and George E. Murphy. New York: Nova Publishers, USA, 2012. P. 1–36.
9. Lomaev M.I., Sosnin Je.A., Tarasenko V.F., Shitc D.V., Skakun V.S., Erofeev M.V. Jeksilampy bar'ernogo i emkostnogo razrjada i ih prilozhenija // Pribory i tehn. jeksperim. 2006. N 5. P. 5–26.
10. Avtaeva C.V. Bar'ernyj razrjad. Issledovanie i primenenie. Saarbrücken, Germany: LAP LAMBERT Academic Publishing, 2011. 193 p.