Simulation of the atmospheric transmission, using spectral line parameters from HITRAN-2008 database and CDSD databank, and the approximation of CO2 absorption line profile, taking the line-mixing effect of closely spaced lines into account, are carried out. For CO2 it is shown the characteristic examples of the spectral regions, where contribution of the effect is recommended to be taken into account in calculation of transmission in the atmospheric conditions.
carbon dioxide, atmospheric transmission, line-mixing
1. URL: http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html Trends in Atmospheric Carbon Dioxide
2. Rothman L.S., Gordon I.E., Barbe A., Benner D.C., Bernath P.F., Birk M., Boudon V., Brown L.R., Cam-pargue A., Champion J.-P., Chance K., Coudert L.H., Dana V., Devi V.M., Fally S., Flaud J.-M., Gama- che R.R., Goldman A., Jacquemart D., Kleiner I., Lacome N., Lafferty W.J., Mandin J.-Y., Massie S.T., Mikhailenko S.N., Miller C.E., Moazzen-Ahmadi N., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V.I., Perrin A., Predoi-Cross A., Rinsland C.P., Rotger M., Simeckova M., Smith M.A.H., Sung K., Tashkun S.A., Tennyson J., Toth R.A., Vandaele A.C., Auwera J.V. The HITRAN 2008 molecular spectroscopic database // J. Quant. Spectrosc. and Radiat. Transfer. 2009. V. 110, N 9. P. 533–572.
3. Jacquinet-Husson N., Crepeau L., Armante R., Boutammine C., Chédin A., Scott N.A., Crevoisier C., Capelle V., Boone C., Poulet-Crovisier N., Barbe A., Campargue A., Chris Benner D., Benilan Y., Bézard B., Boudon V., Brown L.R., Coudert L.H., Coustenis A., Dana V., Devi V.M., Fally S., Fayt A., Flaud J.-M., Goldman A., Herman M., Harris G.J., Jacquemart D., Jolly A., Kleiner I., Kleinböhl A., Kwabia-Tchana F., Lavrentieva N., Lacome N., Li-Hong Xu, Lyulin O.M., Mandin J.-Y., Maki A., Mikhailenko S., Miller C.E., Mishina T., Moazzen-Ahmadi N., Müller H.S.P., Nikitin A., Orphal J., Perevalov V., Perrin A., Petkie D.T., Predoi-Cross A., Rinsland C.P., Remedios J.J., Rotger M., Smith M.A.H., Sung K., Tashkun S., Tennyson J., Toth R.A., Vandaele A.-C., Vander Auwera J. The 2009 edition of the GEISA spectroscopic database // J. Quant. Spectrosc. and Radiat. Transfer. 2009. V. 110, N 9–10. P. 533–572.
4. URL: http://ether.ipsl.jussieu.fr/etherTypo/?id=1293&L=0
5. URL: ftp://ftp.iao.ru/pub/CDSD-296
6. Tashkun S.A., Perevalov V.I. Radiacionnye svojstva SO2: spektroskopicheskie banki dannyh dlja atmosfernyh i vysokotemperaturnyh prilozhenij // Optika atmosf. i okeana. 2011. V. 24, N 12. P. 1109–1112.
7. Lamouroux J., Tran H., Laraia A.L., Gamache R.R., Rothman L.S., Gordon I.E., Hartmann J.-M. Updated database plus software for line-mixingin CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 µm region // J. Quant. Spectrosc. and Radiat. Transfer. 2010. V. 111, N 15. P. 2321–2331.
8. Niro F., Jucks K., Hartmann J.-M. Spectra calculations in central and wing regions of CO2 IR bands. IV: software and database for the computation of atmospheric spectra // J. Quant. Spectrosc. and Radiat. Transfer. 2005. V. 95, N 4. P. 469–481.
9. Rodrigues R., Jucks K.W., Lacome N., Blanquet G., Walrand J., Traub W.A., Khalil B., Le Doucen R., Valentin A., Camy-Payret C., Bonamy L., Hartmann J.M. Model, software, and database for computation of line-mixing effects in infrared Q-branches of atmospheric CO2. I. Symmetric isotopomers // J. Quant. Spectrosc. and Radiat. Transfer. 1999. V. 61, N 2. P. 153–184.
10. Tonkov M.V., Filippov N.N., Timofeyev Yu.M., Polya-kov A.V. A simple model of the line mixing effect for atmospheric applications: theoretical background and comparison with experimental profiles // J. Quant. Spectrosc. and Radiat. Transfer. 1996. V. 56, N 5. P. 783–795.
11. Kochel J.-M., Hartmann J.-M., Camy-Peyret C., Rodrigues R., Payan S. Influence of line mixing on absorption by CO2 Q branches in atmospheric balloon-borne spectra near 13 µm // J. Geophys. Res. D. 1997. V. 102, iss. 11. P. 12891–12900.
12. Curtis P., Rinsland L., Larrabee Strow. Line mixing effects in solar occultation spectra of the lower stratosphere: measurements and comparisons with calculations for the 1932-cm–1 CO2 branch // Appl. Opt. 1989. V. 28, N 3. P. 457–464.
13. Hartmann J.-M., Tran H., Toon G.C. Influence of line mixing on the retrievals of atmospheric CO2 from spectra in the 1.6 and 2.1 µm regions // Atmos. Chem. Phys. 2009. V. 9, N 19. P. 7303–7312.
14. Mitsel' A.A., Ptashnik I.V., Firsov K.M., Fomin B.A. Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere // Atmos. and Ocean. Opt. 1995. V. 8, N 10. P. 847–850.
15. Anderson G.P., Clough S.A., Kneizys F.X., Chetwynd J.H., Shettle E.P. AFGL-TR-86-0110, AFGL (OPI). Hanscom AFB. MA 01736.
16. Rothman L.S., Hawkins R.L., Wattson R.B., Gamache R.R. Energy Levels, Intensities, and Linewidths of Atmospheric Carbon Dioxide Bands // J. Quant. Spectrosc. and Radiat. Transfer. 1992. V.48, N 5–6. P. 537–566.