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The steady state of the oxygen atmosphere is shown to be extremely sensitive to 
the presence of small sources and sinks, except in a narrow region of source and sink 
parameters at a sink rate well below that of the photochemical molecular oxygen 
dissociation where only minor deviations from the equilibrium concentrations of ozone 
and atomic and molecular oxygen are likely to occur. 
 

1. INTRODUCTION  
 

 
The currently available experimental data on the 

variations in the stratospheric ozone concentration 
measured in different geographical areas in recent years1 
have provided ample material for comparison with 
numerical calculations and theoretical generalizations. 
These should be preceded, in our view, by qualitative 
analysis of the relevant system of equations for 
concentrations of oxygen�containing atmospheric 
constituents. Since qualitative analysis is common for 
small sets of equations, in the atmospheric 
photochemistry it is, in fact, performed for a pure oxygen 
atmospheric model.2-4 

If anthropogenic and natural impacts on the atomic 
oxygen and ozone content in the atmosphere are to be 
taken into account it is necessary to consider additional 
chemical reactions between oxygen particles (O, O2, O3) 

and those of other species that can be approximated by 
introducing extra sources and sinks into the system of 
equations for the oxygen atmosphere. In the present paper 
qualitative changes in the oxygen particle concentrations 
are examined using the oxygen atmospheric model within 
the framework of the small source and sink 
approximation. 

Section 2 gives chemical reactions accounted for in 
analysis of the steady state of the atmosphere and the 
hierarchy of dimensionless parameters. Sections 3 and 4 
describe a basic system of equations and its steady state 
(standard) solution. Section 5 is concerned with the effect 
of small sources and sinks on the deviation of the steady 
state oxygen atmosphere from the standard solution. 

 
2. OXYGEN ATMOSPHERE 

 
The number of chemical atmospheric reactions 

involving oxygen particles is fairly large. However, 
introducing the concept of the oxygen atmosphere we pick 
out of this diversity the reactions involving oxygen 
particles alone or oxygen particles and nitrogen 
molecules, as well as photochemical processes responsible 
for destruction of ozone and molecular oxygen. Within 
the set of reactions chosen we will restrict our 
consideration to those involving no more than three 
particles. Reactions of this sort are listed in Table I. The 
rate constants are given at 30 km altitude and references 
are made to the papers from which the data are cited. 
Also included in Table I are the dimensionless quantities  

ξi that provide an insight into the hierarchy of the terms 

involved in the equations of interest. Coefficients of the 
basic equations defining dynamics of chemical processes in 
the oxygen atmosphere are linear combinations of the 
quantities ξi. The oxygen atmospheric model together 

with all reactions enumerated in Table I will provide a 
basis for the development below. 

 

 
 
 

FIG. 1. Values of ξi (i = 1, 3, and 4) vs height in the atmosphere. 
 

The rates of chemical reactions essentially depend on 
the temperature, the latter being a function of the height in 
the atmosphere. With these relationships in mind we have 
calculated the variation of the dimensionless quantities ξ1, 

ξ3 and ξ4 with the height using the data from Ref. 5 as the 

base. As can be seen from Fig. 1 and Table I, the following 
inequalities between these quantities are valid at all the 
heights of interest: 

 

ξ1, ξ2, ξ8, ξ9, ξ10, ξ11 > ξ3 > ξ4 > ξ5, ξ6, ξ7 (1) 
 

where ξ2, and ξ5 – ξ11 are essentially independent of the 

height, which means that the conclusions to emerge from 
the qualitative analysis of the oxygen atmospheric model 
hold good for the 15–80 km range, to say the least. 

Our consideration of the oxygen atmospheric model 
will be restricted to analysis of the steady state found in 
the neighbourhood of equilibrium concentrations of 
oxygen particles under natural conditions. 
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TABLE I.  Basic reactions involved in the oxygen atmosphere (H=30 km) . 
 

Oxygen reactions Reaction rate Ref. Dimensionless parameters 

O + O2 + N2 → O3 + N2 kN2
 = 1.11⋅10–33 s–1 cm6 5  

 O + O3 → 2O2 k3 = 7.71⋅10–16 s–1 cm3 5 ξ1 = k3/kN2
N = 2.37 

O + O + N2 → O2 + N2 k
N2
4  = 8.56⋅10–33 s–1 cm6 5 ξ2 = k

N2
4 /kN2

N = 2.63 

O3 + hν → O + O2 J3 = 5.4⋅10–4 s–1  5 ξ3 = J3/kN2
NA = 10–4 

O2 + hν → 2O J2 = 7.4⋅10–11 s–1  5 ξ4 = J2/kN2
NA = 10–11 

O3 + N2 → O + O3 + N2 k
N2
–2 = 5.22⋅10–32 s–1 cm3 2 ξ5 = k

N2
–2/kN2

A = 10–16 

O3 + O3 → O + O3 + O2 k
O3
–2 = 1.5⋅10–31 s–1 cm3 2 ξ6 = k

O3
–2/kN2

N = 5.4⋅10–16 

O3 + O2 → 2O2 + O k
O2
–2 = 6.57⋅10–32 s–1 cm3 2 ξ7 = k

O2
–2/kN2

N = 2.3⋅10–16 

O + O2 + O2 → O2 + O3 k
O2
2  = 1.11⋅10–33 s–1 cm6 2 ξ8 = A k

O2
2 /kN2

N = 0.3 

O + O2 + O3 → O3 + O3 k
O3
2  = 2.52⋅10–33 s–1 cm6 2 ξ9 = A k

O3
2 /kN2

N = 0.6 

O + O + O2 → O3 + O k
O
2 = 1.1⋅10–33 s–1 cm6 2 ξ10 = A k

O
2/kN2

N = 0.6 

O + O + O2 → 2O2 k
O2
4  = 10–32 s–1 cm6 – ξ11 = A k

O2
4 /kN2

N = 0.3 

O + O + O3 → O3 + O2 k
O3
4  – ξ12 

O + O3 → 2O + O2 k
O
–2 

– ξ13 

O + O + O → O + O2 k
O
4  

– ξ14 

 N = 2.93⋅1017 cm–3 5 A = 1.46⋅1017 cm–3 

 
3. BASIC SYSTEM OF EQUATIONS 

 
Let x, y, and z be the molecular and atomic oxygen 

and ozone concentrations, respectively. The number of 
nitrogen molecules is assumed to be constant. In the context 
of the oxygen atmospheric model the system of equations 
for the time evolution of oxygen particles has the form: 
 

d x/ d t = ( k
N2
–2 N + J3) z – J2 x – kN2N x y + 

 

+ k
N2
4  N y2 + (2 k3 + kO

–2) y z + k
O2
–2 x z + k

O3
–2 z

2 + 
 

+ (k
O2
4  – kO

2 ) x y2 – k
O2
2  x2 y + k

O3
4  y2 z – k

O3
2  x y z + kO

4 y
3 ; 

 

d y/ d t = (k
N2
–2 N + J3) z + 2 J2 x – kN2 N x y – 2 k

N2
4  N y2 –  

 

– (k3 + kO
–2) y z + k

O2
–2 x z + k

O3
–2 z2 – (2 k

O2
4  + kO

2 ) x y2 – 
 

– k
O2
2  x2 y – 2 k

O3
4  y2 z – k

O3
2  x y z – 2 k

O
4  y3 ;  (2) 

 

d z/ d t = – (k
N2
–2 N + J3) z + kN2 N x y – (k3 + k

O
–2) y z – k

O2
–2 x z – 

 

– k
O3
–2 z2 + kO

2  x y2 + k
O2
2  x2 y + k

O3
2  x y z . 

 

It follows from the law of conservation of the number 
of oxygen atoms that: 

 
2 x + y + 3 z = A ,  (3) 
 
where A is the total number of the oxygen atoms in cm3 
(the numerical value for A is given in Table I). Relation (3) 
defines the reaction triangle9 (see Fig. 2). The desired 
solution of the system of equations is bound to lie in the 
plane of the triangle. 

 
 

FIG. 2 . Reaction triangle in the space of concentrations 
x, y, and z. 

 
Qualitative analysis of Eq. (2) is conveniently performed 

by conversion to Cartesian coordinates (w′, u′, v′) chosen so 
that the w′–axis is perpendicular to the plane DBC, the u′–
axis is directed along the straight line DB and the origin of 
coordinates is at the point D. In the resultant coordinate 
system the reaction triangle lies in the plane (u′, v′) and the 
highest normalized equilibrium concentration of the oxygen 
particles is that of the molecular oxygen lying in the vicinity 
of the origin of coordinates. 

The change to the new coordinate system is defined by 
the following relations:  

w′ = – 
A
14

 + 
1
14

 (2 x + 3z + y) ; 

u′ = 
3A

2 13
 + 

1
13

 (– 3x + 2 z) ; (4) 

ν′ = 
A
182

 + 
1
182

 (2 x + 3z – 13y) .   
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For convenient handling of values of different order of 
magnitude let us introduce the dimensionless time 
t′ = t kN2

NA 

and the dimensionless coordinates  
u′ = A u,  ν′ = A v,  w′ = A w . (5) 
In the coordinate system (u, v, w) the basic set of dynamic 
equations for the oxygen atmosphere becomes  
 

d w/ d t= 0 ; 
 

d u/ d t = a0 – a1 u + a2 ν + a3 u
2 – a4 u ν + a5 ν

2 + a6 u ν2 +  
 

+  a7 ν u2 + a8 ν3 ; (6) 
 

d ν/ d t = b0 + b1 u – b2 ν + b3 u
2 – b4 u ν + b5 ν2 +  

 

+ b6 u ν2 + b7 ν u2 + b8 ν3  
 

subject to the condition that w(0) = 0, which results from 
Ed. (3). 

Eqs. (6) provide a basis for the subsequent analysis of 
the steady state solution. The coefficients appearing in 
Eqs. (6) are given in Table II. 

 
 

Table II. Coefficients of the basic system of equations.
 
 

a0 = 3ξ4 /2 13 

a1 = (10ξ3 + 9ξ4 + 10ξ5 + 5ξ7)/13 

a2 = 5/2 14 + 3(5ξ3 – 2ξ4 + 5ξ5 + 5ξ7 /2)/13 14 + 5ξ8 /4 14 

a3 = 10(2ξ6 – 3ξ7)/13 13 

a4 = (15 + 16ξ1 – 60ξ6 /13+ 25ξ7 /13 + 10ξ13 )/2 182 + 5 (3ξ8 – ξ9) 182 

a5 = (– 10 + 24ξ1 – 39ξ2 – 30ξ7 /13 – 45ξ6 /13 + 15ξ13)/14 13 + 65ξ10 /2 + 45ξ8 /2– 15ξ9 /2 – 39ξ11 /2)/14 13 

a6 = (135ξ8 /13 + 25ξ9 /13 – 15ξ10 + 9ξ11 – 6ξ12)/14 

a7 = 15(3ξ8 – 2ξ9)/13 14 

a8 = (110ξ8 /13 + 30ξ9 /13 – 10ξ10 + 6ξ11 + 9ξ12 – 39ξ14)/14 14 

b0 = 14ξ4 / 13 

b1 = 14(2ξ3 – 6ξ4 + 2ξ5 + ξ7)/ 13 

b2 = 1/2 + (3ξ3 + 4ξ4 + 3ξ5 + 3ξ7 /2)/13 + ξ8 /4 

b3 = 2 14(2ξ6 – 3ξ7)/ 13 

b4 = ( – 3 + 2ξ1 + 12ξ6 /13 – 5ξ7 /13 – 2ξ13)/ 13 + (3ξ8 – ξ9)/ 13 

b5 = (2 + 3ξ1 – 26ξ2 + 9ξ7 /13 + 6ξ6 /13 – 3ξ13)/ 182 + 1 / (2 182) (– 13ξ10 + 9ξ8 + 3ξ9 – 26ξ11)/2 182 

b6 = – ( – 27ξ8 /13 + 5ξ9 /13 – 3ξ10 – 6ξ11 – 4ξ12)/ 14 

b7 = 3 ( – 3ξ8 + 2ξ9 )/13 

b8 = ( – 22ξ8 /13 – 6ξ9 /13 + 2ξ10 + 4ξ11 + 6ξ12 – 26ξ14)/14 
 

The reaction triangle lies in the plane (u, v) as viewed 
in Figure 3. 

 
 

 
 

 

FIG. 3 . Reaction triangle in the plane (u, v). 
 

4. STEADY–STATE SOLUTIONS 
 

Before proceeding to the problem of steady state 
solutions of Eqs. (6) we point out that the coefficients ai 

and bi given in Table II are related by the equation 
 

a1 b2 = a2 b1 , (7) 
 

which is accurate up to the terms on the order of ξ4 = 10-11. 

Since the free terms are small and the coefficients used with 
the other terms are around unity, we may seek solutions of 
Eqs. (6) in the form 
 
 

u0
 = ν0 a2/ a1 + Δ , (8) 

 

where Δ n ν0 a2/ a1

 
. 

In the search for the steady–state solutions of Eqs. (6) 
the cubic terms can be omitted because of their small 
magnitude as compared to the quadratic and linear terms. 
Substitution of u0 into Eqs. (6) furnishes steady–state 

solutions with given accuracy. 
 

ν0 = 
a1

a2
 
a0 b1 + b0 a1

a1 b4 + a4 b1
 = 

14 ξ3 ξ4

13(ξ1 + 15 ξ8 – 5 ξ9)
 = 

 
 

= 
14 ξ3 ξ4

13 ξ1
 α , (9) 

 

Δ
 
= 

a0 b4 + b0 a4

a1 b4 + a4 b1
 , (10) 
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u0 =
 

a2

a1
 
a0 b1 + b0 a1

a1 b4 + a4 b1
 = 1/4 

13 ξ4

ξ1 ξ3
 α . (11) 

 

y0=A α 
ξ4 ξ3

ξ1
 , z0=1/2 A α 

ξ4

ξ3 ξ1
 ,  (12) 

 
or z0 = y0/2ξ3 . 

The relationship between the ozone concentration and 
that of the molecular oxygen determined by Eq. (12) is well 
known.6 In what follows we will refer to Eq. (12) as the 
standard solution. The calculation of the Lyapunov factors 
shows the steady–state solution (12) to be stable, and the 
relaxation times to the steady state are of the order: 

t1 = 2 s, and t2 = 0.5.107 s. 

No other stable solutions in the vicinity of the point 
(x0, y0, z0) exist. Eq. (11) states that in the leading order 

the approximate solution depends on the coefficients ξ4, ξ3, 

and ξ1, which allows the general conclusion that when 

analysing the oxygen atmospheric states approaching the 
stable state it is vital to take into account the following 
reactions: 

 
O + O2 + N2 → O3 + N2 ;  

O + O3 + O2 → O3 + O3 ;  

2O2 + O → O2 + O3 ;  

 O + O3 → 2O2 ;  

O3 + hv → O + O2 ;  

O2 + hv → 2O . (13) 
 

The set of six reactions (13) may be referred to as the 
Chapman cycle.7 

In the subsequent discussion, our analysis of systems 
with a varying number of oxygen atoms will be based on  
a more general form of Eqs. (6) taking into account a 
non�zero value of w. It is straightforward to show that for 
analysis of a steady–state solution of this kind of system of 
equations governing the behaviour of the oxygen atmosphere 
within the framework of the Chapman model (see reactions 
(13)), it would suffice to retain the terms whose order is no 
higher than quadratic. 
 

5. SOURCES AND SINKS IN THE OXYGEN 
ATMOSPHERE 

 
In the upper atmosphere account must be taken of 

the variation of the oxygen particle concentration 
attributable to the action of sources and sinks along with 
the chemical reactions described above. Sinks may differ in 
nature (settlement of oxygen particles on aerosols of 
volcanic origin or local oxidation processes induced by 
artificial or natural objects flying by, etc.). Sources may 
appear as biological processes or oxidant emissions attendant 
on rocket launches. We will neither go into details of the 
origin of sources and sinks nor consider their time scale, for 
we deal with a "point" process, whereas mechanisms acting 
as local sources or sinks are by no means lacking. The effect 
of sources and sinks were also discussed elsewhere.8 

The sink and source values will be given in 
equations by the terms kx x, ky y, kz z and li A.  

In the original coordinate system (x, y, z) the 
inclusion of sources and sinks gives rise to added linear 
terms to the basic system of equations in the form of 
corrections  

 

d x/ d t = (...) – kx x + lx , d y/ d t = (...) – ky y + ly ,  

d z/ d t
 
= (...) – kz z + lz . (14) 

 
With the prior normalization the sinks and sources 

will be described by the respective coefficients 
λi = ki/(kN2NA) and θi = li/(kN2NA2). 

In the coordinate system (w, u, v) the linear 
corrections to the equations associated with sinks and 
sources have the form: 
 

d w/ d t = w0 + γ11 w + γ12 u + γ13 ν ; 
 

d u/ d t = (...) + u0 + γ21 w + γ22 u + γ23 ν ; 
 

d v/ d t = (...) + ν0 + γ31 w + γ32 u + γ33 υ . (15) 

 
In Eqs. (16) the following notations are used:  

 

w0 = 
1
14

 (2 θx+ 3 θz – χx) , u0= 
1
13

 (2 θz+ 3 θx – 3χx/2) ,  

 

v0 = – 
2 θx+ 3 θz– 13 θy– cx

182
 , γ11 = 

4χx + 9χz + χy

14  ,  

 

γ12 = 
6(χx – χz)

182
 , γ13 = 

4χx – 13χy + 9χz

14 13
 , 

 

γ21 = 
6(χx – χz)

182
 , γ22 = 

9χx + 4χz
13  , γ23 = 

– 6(χx – χz)

13 14
 , 

 

γ31 = 
4χx + 9χz – 13χy

14 13
 , γ32 = 

– 6(χx – χz)

182
 ,  

 

γ33 = 
4χx + 169χy + 9χz

182  . (16) 

 

Again, the introduction of the sources and sinks into 
the analysis raises the question of the number of reactions to 
be considered for a correct description of the steady–state 
solution. Since the task was to find solutions approaching 
the standard solution, our consideration may be restricted to 
the Chapman approximation. In the coordinate system (w, 
u, ν), with allowance made for the six reactions (13) as 
well as for sources and sinks, the dynamic equations differ 
essentially from the relations discussed previously by the 
non–zero derivative of w, while the structure of the other 
equations is virtually unchanged, except that the 
coefficients are renormalized: 
 

d w/ d t = w0 + γ11 w + γ12 u + γ13 ν ; 

d u/ d t = A0 – A11 u + A12 v + A13 w – A222 ν2 – 

–
 
A212 u ν – A233 w2 – A213 w u – A223 w ν ; 

(17) 

d v/ d t = B0 + B11 u – B12 ν – B13 w – B222 ν
2 – B212 u ν– 

– B233 w2 – B213 w u – B223 w ν.  
 

To find the steady states for Eqs. (17) and test them 
for stability we eliminate the variable w to derive an 
equation for the plane in the space of the variables (u, ν, 
w), which is an analog of relation (3). The analog is 
explicitly expressed as 
 

w= (w0 + γ12 u + γ13 ν)/γ11 = δ0 + γ1 u + γ2 ν ; (18) 
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δ0 = 14 
Ω – χx

4χx + 9χz + χy
 ; γ1 = 6 

14
13 

χx – χz

4χx + 9χz + χy
 ; 

 

γ2 = 
1
13

 – 
14
13

 
χy

4χx + 9χz + χy
 ; Ω = 2θx + θy + 3θz . 

 

Let us pass on to the spherical coordinates in the space 
of the parameters (χx, χy, χz), setting  
 

χx = r sin ϕ cos ψ, χy = r cos ϕ cos ψ,  χz = r sin ψ. 
 

From the explicit form of the quantities γ1,2, it follows  

that they are independent of the orbital coordinate 

r = χx
2 + χy

2 + χz
2, i.e. the space of the parameters is 

isotropic. The dependence on r can be eliminated from the 
coefficient δ0, setting |χx ⋅ Ω| < ξ4.  

The elimination of the variable w results in a system 
of two equations:  

 
 

0 = A A0 – A1 u + A2 ν – A4 u ν – A3 u2 – A5 ν2 ,

0 = B B0 + B1 u – B2 ν – B5 ν2 – B4 u ν – B3 u2 .
 (19) 

 

The coefficients of Eqs. (19) involve the corresponding 
coefficients of Eq. (6) and the corrections linear in γi, δ0, χi, 

and θi. 

The introduction of sources and sinks destroys the 
standard steady–state solution. There may be different 
destruction mechanisms depending, to a large extent, on the 
precise interval, out of the four likely intervals determined 
by the Eq. (1), wherein the parameters χi and θi fall. 

We will restrict our consideration to the interval χi, 

θi n ξ4 corresponding to the case of small sources and sinks. 

This approximation permits us to eliminate the terms 
proportional to χi and θi from Eqs. (19). 

 

 
 
FIG. 4 Range of admissible reaction rates characterizing 
sinks for which the steady–state solution deviates from 
the standard solution by ≤ 10%. 

 

Even though the sources and sinks are small the 
steady–state solution of Eq. (19) may differ essentially 
from the standard solution. This is due to the dependence of 
the coefficients of Eqs. (19) on γi and δ0. As Eqs. (18) 

suggest γi and δ0 depend on the ratio χi/χj and on the 

difference (χx  – Ω). 

Subject to the condition that δ0 n ξ4, which defines a 

close relationship between the source and sink rate of the 
molecular oxygen, consistent analysis of deviations from the 
steady state will reveal a fold–shaped region in the space of 
parameters whose widest part is not greater than ξ4 (see 

Fig. 4) where the steady states deviating from the standard 
state by 10% at most are concentrated. The most essential 
condition wherein small deviations are realized is that the 
sink rates of molecular oxygen and ozone be nearly the same 
(⏐χx–χz⏐n ξ4 ). Violation of this condition will result in 

considerable deviations or actually destroy the steady state. 
 

6. CONCLUSION 
 
From the foregoing discussion it follows that the 

steady state of the oxygen atmosphere is extremely sensitive 
to the introduction of small sinks and sources. However, in 
a narrow region of the space of parameters characterizing 
the sources and sinks only slight deviations from the 
equilibrium concentrations of the ozone and atomic and 
molecular oxygen are likely to occur if sink rates are much 
below the rate of the photochemical dissociation of the 
molecular oxygen. 
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