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The possibilities of quickly calculating the transmission function using the 

Dirichlet series are discussed.  Such a technique should provide an insight into the 
solution of pragmatic problem on reducing the volume of radiation codes in climatic 
models and geophysical applications of the atmospheric spectroscopy. 

 
The expression for the transmission function 
 

P(x) = 
1
Δω ⌡⌠

ω′

ω″
 

 
dω exp($i(ω)x) (1) 

 

with the spectral (for frequency ω and Δω�= ω″$ω′) 
coefficient of molecular absorption i(ω) and the 
argument x (for example, by the precipitated layer of 
absorbing gas), with the use of exponential series, can 
be rearranged to the form 

 

P(x) = ⌡⌠
0

∞
 

 
f(s)ds = ⌡⌠

0

1
 

 
dg exp($s(g)x) (2) 

 

with a subsequent application, to Eq. (2), of the 
suitable formula of integration.  In Eq. (2) f(s)=g′(s); 
s(g) is the function inverse to g(s); and, as was shown 
in Ref. 1, 

 

g(s) = 
1
Δω ⌡⌠

i(ω)≤s, ω∈[ω″,ω′]

 

 
dω. (3) 

 

The formulation of the problem considered below 
is rather natural.  Let us assume that the function (3) 
is constructed for the "base" (say, 10 cm$1 wide) 
intervals δω, and it is necessary to calculate, from these 
data, Eq. (1) for random Δω > δω.  The principal 
answer is obvious: because of Eq. (3) we have 

 

g(s) = ∑
α=1

β
 

 
g(α)(s) 

δωα

Δω  , (4) 

 

where α is the number of an interval in Δω division 
into β portions (and for some reasons δω can be 
different), and g(α)(s) is the function (3) for the 
corresponding "elemental" spectral range. 

The following refinement of the problem is 
connected with the purely pragmatic reasons $ the need 
to have, in the radiation codes, the least time- and 
space-expensive version, providing however suitable 

accuracy.  Therefore it is desirable to refer to the 
function (3) directly related to i(ω) in order to 
exclude the recalculation of s(g) after application of 
Eq. (4).  For purely mathematical reasons (see Ref. 1), 
differentiation of g(s) is only possible by numerical 
methods. Integration by part in the first expression (2) 
reduces P(x) to the form 

 

p(.) = exp($xsmax) + x⌡⌠
smin

smax
 

 
ds g(s)exp($sx), (5) 

 

and the existence of the portion smin ≤ s ≤ smax, where 
smax and smin are the maximum and minimum values of 
i at the interval considered, is the direct consequence 
of Eq. (3). 

If one uses most rational formulas of integration, 
the integration over a fixed interval (usually, [0, 1]) of 
a dimensionless variable should be used.  Certainly, 
there is no such integration in the combination of 
equations (5) and (6).  The method to be used is rather 
simple $ the change of variable 

 

s = λ(smax $ smin) + smin,  0 ≤ λ ≤ 1 , (6) 
 

reduces the integral from Eq. (5), at any spectral 
interval, to 

 

∑
j=1

n

 
 

 
g( )~s(λj)exp[$~s(λj)] aj  (7) 

 

with simple numbers λj and aj, determined by the 
chosen formula of integration, where some nth degree 
polynomial takes part. 

However, there is one fine detail while very 
important.  The point is that within practically any 
spectral range intensities of spectral lines vary by 
several orders of magnitude and similar great 
difference will take place between smin and smax.  
This, in turn, results in the fact that after the 
variable substitution (6) a marked portion of the 
curve g(s) simply drops out from consideration that is 
the cause of a great error in calculations. 
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TABLE I. 
 

j 0λ s g 

1 0.058069 23.576 0.78 
2 0.23517 95.479 0.92 
3 0.33804 134.16 0.95 
4 0.5 203 0.97 
5 0.66195 268.75 0.98 
6 0.76483 310.5 0.99 
7 0.94193 382.42 0.994 

 
TABLE II. 

 

 p 

. Calc. by  
Eqs. (4) and (5) 

Exact 
calculation 

0.001 0.865 0.863 
0.1 0.428 0.564 
1 0 0.325 

 

 
 

FIG. 1. Bars on the curve g(s) denote s values  
corresponding to Eq. (7). 
 

 
 

FIG. 2. Uniform distribution of abscissas in Eq. (2). 

The situation for the 2350$2400 cm$1 range of the 
CO2 spectrum is illustrated by Tables I and II and 
Fig. 1 for the case when Eq. (5) corresponds to the 
Chebyshev formula of integration (ordinates aj = 1/n 
and below n = 7).  In the case under consideration 
smin = 1.25⋅10$3 and smax = 407.  For a comparison, 
Fig. 2 shows how all information on Eq. (3) is used 
when applying the second expression (2). 

As we have found out, the technical difficulty we 
faced can be removed rather simply and efficiently.  It 
turns out to be possible to calculate the integral from 
Eq. (5) (accurate to no less that 2$3%) following the 
scheme 

 

⌡⌠
smin

smax
 

 
ds → ⌡⌠

s1

s2
 

 
ds + ⌡⌠

s2

s3
 

 
ds + ... ⌡⌠

sm$1

sm
 

 
ds. (8) 

 

In Eq. (8) s1 = 10
l1 is the number closest to smin 

under the condition 10
l1 < smin, s2 = 10

l1+1
, s3 = 10

l1+2
 

and so on up to sm = 10
l2 $ the number closest to smax, 

and sm > smax.  The variable in Eq. (6) is now  
s′max(0.9λ + 0.1) and the upper limit plays the role of 
s′max.  The formulas (6) and (7) are then applied to 
each integral from Eq. (8), what involves all the 
information about g(s) into the calculation of P. 

The final expression 
 

P = ∑
j=1

n
 

 
 ∑
α=1

β
  ∑

l=l1

l2
 

 

δω
Δω g(α)(10l(0.9λj + 0.1)) × 

× exp[$x(10l(0.9λj + 0.1))] (9) 
 

will be the consequence of Eqs. (8), (4), and (7).  It is 
just this expression that gives a solution to the above-
formulated calculational problem. 

Before discussing one more aspect of the 
exponential series, we would like to remind some points 
of the theory of Dirichlet series.2$4  If sj are zeros of 
the properly selected integral function L(s), then 

 

P(x) = ∑
j

 bj exp($xsj);  (10) 

 

∑
j′

1
 

 
bj′ = 

1
2πi  ∑

c$i∞

c+i∞
 

 

dz
z  eηz P(z),  c > 0,  sj < η < sj+1 . (11) 

 

If follows from Eqs. (11), (3), and (1) that in 
Eq. (10) 

 

bj = g(η) $ g(η′),  sj$1 < η < sj , (12) 
 

where η has the same meaning as in Eq. (11). 
Theoretically, η and η′ can be selected in any way 

from the indicated intervals.  But it will be so if the 
problem of L(s) is exactly solved $ for it the exponent 
expansion exists, the Dirichlet series converges, and 
just to its proper function. 
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However, in practice in Eq. (10), as well as in 
Eq. (7), the finite-degree polynomial will take place in 
spite of L.  And, as follows from Eq. (12), it should 
enter into the set of polynomials orthogonal with the 
weight f(s) at the interval [smin, smax].  The construction 
of such a function is a rather cumbersome process and 
certainly we have to restrict our consideration to standard 
formulas of integration, when the role of sj is played by 
their abscissas.  Therefore the choice of η and η′ should 
be considered as an approximation procedure. 

Figure 3 illustrates schematically the problem arose. 
We should express g(η) in terms of g(sj) in a reasonable 
way. The arithmetical averages of ordinates 
 

b1 = 
1
2 (g1 + g2), b2 = 

1
2 (g3 $ g1), b3 = (g4 $g2) ...  

bj =1$ 
1
2 (gj$1 +gj), 

 

where gj = g(sj), can be considered as a result.  In other 
version, the result is the arithmetical averages of abscissas 
 

b1 = g ⎝
⎛

⎠
⎞s1 + s2

2  ,  b2 = g ⎝
⎛

⎠
⎞s2 + s3

2  $ g ⎝
⎛

⎠
⎞s2 + s1

2  ,   

b3 = g ⎝
⎛

⎠
⎞s3 + s4

2  $ g ⎝
⎛

⎠
⎞s3 + s2

2  ,  

bj$1 = g ⎝
⎛

⎠
⎞sj$1 + sj

2  $ g ⎝
⎛

⎠
⎞sj$1 + sj$2

2  ,    

bj = 1$ g ⎝
⎛

⎠
⎞sj + sj$1

2  .  

 
FIG. 3. Set out as an ordinate is g(s) multiplied  
by Δω. 

 
In any case, to apply Eq. (4), one should use the 

procedure like in formulas (5)$(9). 
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